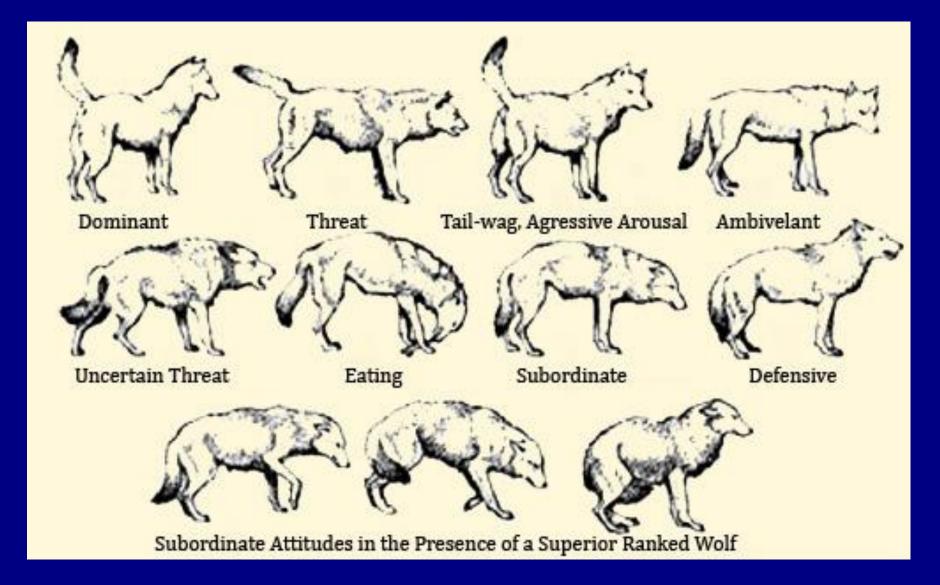
Behavior & Ecology

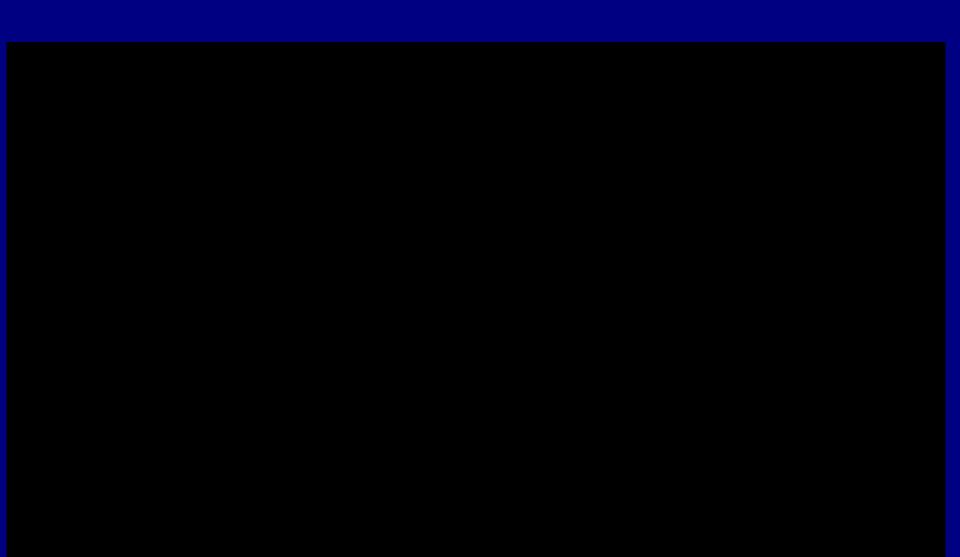

- Chapters 22, 25
- I. Communication
- II. Home Range & Territoriality
- **III.** Dispersal & Migration
- IV. Habitat Selection: theory & practice

I. Communication

- Behavioral, physiological, or morphological characteristics that convey information to other organisms
- Arose & maintained by natural selection
- Players: sender, receiver, signal
- Cui bono?
- Signals are some type of code that can easily be detected or decoded

A. Modes of Communication

- 1. Vision
- 2. Olfaction
 - Pheromones chemical signals between conspecifics
 - Can elicit behavioral or physiological response
- 3. Hearing
- 4. Tactile



B. Functions of Communication

- Ultimate function is to increase fitness, proximate functions are variable
- 1. Group spacing & coordination
- 2. Recognition
 - a. Species
 - b. Kin (nepotism)
 - c. Genetic mechanisms (MHC)
- 3. Reproduction
- 4. Aggression & social dominance
- 5. Alarm
 - a. Semantic communication
- 6. Hunting & foraging
 - a. ex. Rally

Reading for next time

Hebblewhite & Merrill (2009)
 Ecology 90:3445-3454

Animal Behavior Space Use & Movements

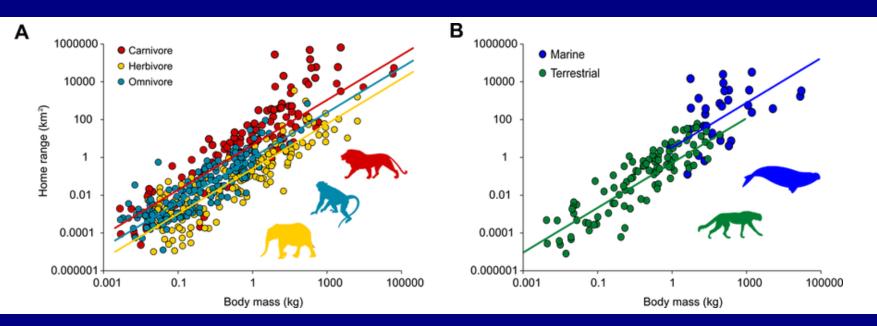
- Intrinsic factors who YOU are
- Extrinsic factors what is around you
- So why do animals do what they do?
- Intrinsic qualities
- Extrinsic qualities
 - Food
 - Other animals conspecifics & heterospecifics
 - Humans
 - Non-animal habitat features

II. Home Range & Territoriality

- Burt 1943: Area traversed by individual in its normal activities of food gathering, mating, and caring for its young
- Limits/complications?
- "normal"
- Time period?
- Migratory species
- Forays

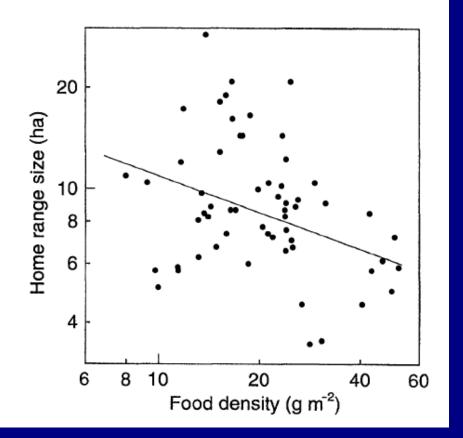
- Burt (1943): "Occasional sallies"

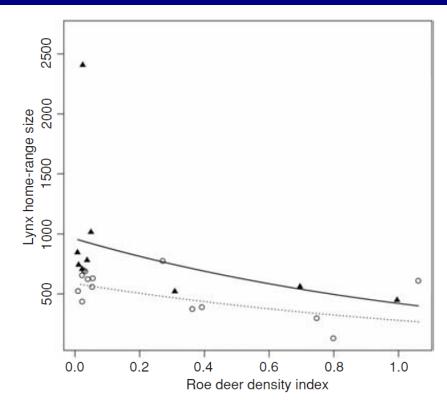
A. Benefits of Home Ranges


- 1. Energy efficiency obtain resources in smallest area possible
- 2. Familiarity with environment
- 3. Familiarity with local conspecifics

B. Home Range Size

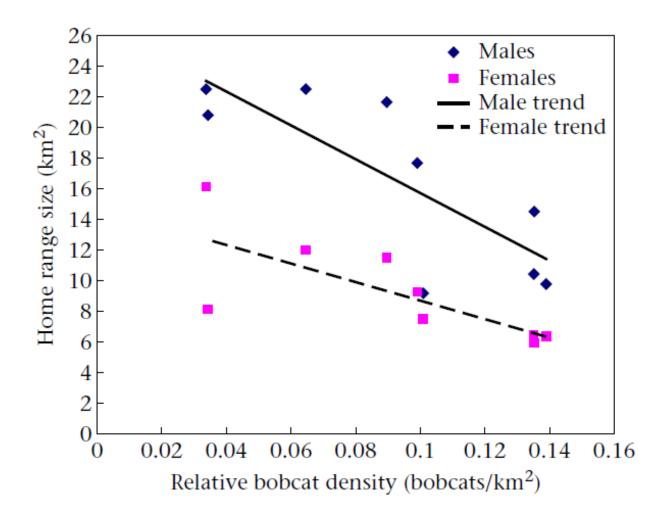
- 1. Body size (across species)
- 2. Available resources (within species)
- 3. Others
 - 1. Population density (across & within populations)
 - 2. Fragmentation

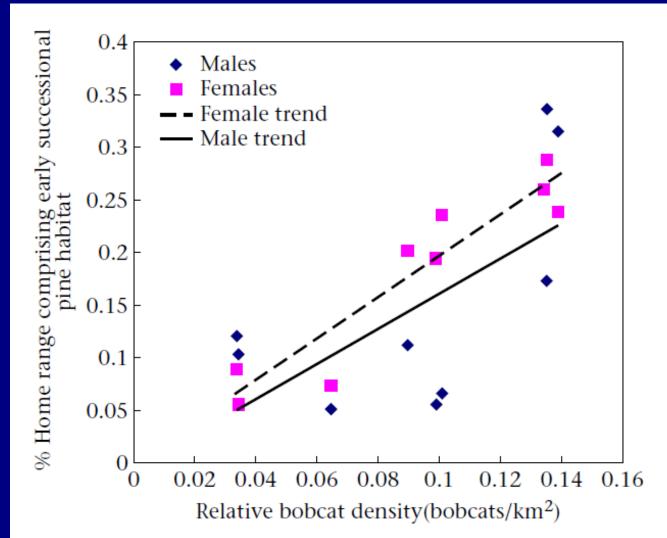

- Can have variable effects


- 1. Body size = 53-85 % of variation
- 2. Diet = 15% of variation

3. Environment (marine vs. terrestrial)= 1-2 % of variation

Tucker et al. 2014, Global Ecology & Biogeography 23


Roe Deer


Fig. 2. Observed home-range size and roe deer *Capreolus capreolus* density for males (filled triangles) and females (open circles), and predicted relationship from the multivariate linear mixed model (filled line, males; dashed line, females). The models are calculated from all 52 annual home ranges, whereas the symbols are illustrative and reflect an average value for each of the 23 individual lynx *Lynx lynx*.

Food Availability

European Lynx

Figure 1. Relationships between bobcat density during 1989–1997 and mean annual male ($R^2 = 0.64$, N = 9, P = 0.0096) and female ($R^2 = 0.56$, N = 9, P = 0.020) home range size estimates.

Figure 2. Relationships between bobcat density during 1989–1997 and male ($r_7 = 0.64$, P = 0.065) and female ($r_7 = 0.94$, P = 0.002) annual use of early successional pine habitat.

Mountain Lions

- Sex ratio: 2 or 3 females per male (adults)
- Adult males breed with multiple females
- Solitary except females with offspring
- Kittens stay with mother ~14 months

 All males disperse, ~50% females disperse
- Males kill other pumas
- Large home ranges:
 - 200-800 km² (males)
 - 90 300 km² (females)

Smallest Puma HR EVER!

400 km²

24 km²

P22 (Hollywood Lion)

134 Fwy

101 Fwy

I-5 Fwy

Los Angeles

Home Range Size Review

Body size?

- Across species & populations
- Food availability/quality?
 - Within and across populations
- Density?
 - Across & sometimes within populations
 - Often confounded with food availability
- Fragmentation?
 - Can lead to larger or smaller home ranges

C. Core Area

- Area within the home range of greatest use
- Often arbitrary (50% or 60%)
- Can be useful though!

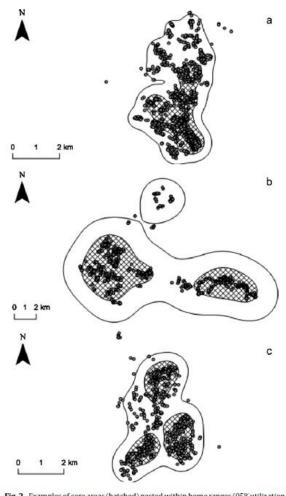


Fig. 2. Examples of core areas (hatched) nested within home ranges (95% utilization distribution) of GPS-collared adult female moose. Points are relocations from which the home range was derived. Number of spatially discrete cores and the relative intensity of use values (I) vary among the 3 individuals: one core, 2.0 (a); two cores, 1.9 (b); and three cores, 2.9 (c), respectively.

D. Territory

- Burt 1943: Defended portion of the home range
- Exclusion: portion of home range used exclusively by individual or group
- Benefits: access to resources
- Costs: energy expenditure and/or risk of injury

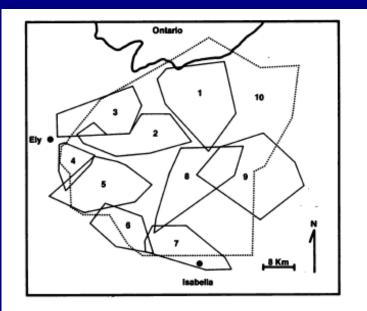


Figure 1.—Wolf census area (2060 km² in the central Superior National Forest of northeastern Minnesota. Outlined, numbered areas represent minimum wolf pack territory boundaries for winter 1984-1985 as follow: 1, Ensign L. Pack; 2, Pagami Pack No. 2; 3, Wood L. Pack; 4, Birch L. Pack; 5, Little Gabbro Pack; 6, Jackpine Pack No. 4; 7, Sawbill Pack; 8, Quadga L. Pack No. 2; 9. Maniwaki L. Pack No. 2; 10, Malberg L. Pack (approximate territory because pack was not radioed in 1984-85).

III. Dispersal & Migration

- **Dispersal**: movement from natal to breeding range
- Philopatry: breeding at or near natal area
 - Philopatric mammals do not disperse
- Successful dispersal: animal that survives dispersal, establishes breeding range, breeds

Proximate vs. Ultimate

- Proximate: immediate physiological or environmental factor/cue that causes event or trait – "How something works"
- Ultimate: underlying evolutionary process leading to the event or trait
 - "Why something exists"
- Ex.: Female elk breed w/ males that bugle deepest
- Proximate: deeper bugle elevates female hormones
- Ultimate: deeper bugle indicates size & strength of male
- Thus females that breed with better buglers have offspring that are stronger and more likely to survive

A. Reasons for Dispersal

1. Proximate:

- Aggression from parents
- Physiological (e.g., testosterone)
- Food availability
- 2. Ultimate
 - a. Inbreeding avoidance
 - i. Inbreeding
 - ii. Inbreeding depression
 - **b. Competition** (intraspecific; subordinates disperse)
 - I. Food
 - II. Mating opportunities

> 3 explanations: Inbreeding, Food Comp, Mate Comp

Example: Mountain Lions

- Females: some disperse, some do not
 - Philopatry & matrilines
 - Shorter distances than males
- Males: all disperse
- Females:
 - Competition for food
- Males
 - Competition for mates?
 - Competition for food?
 - Inbreeding avoidance?

B. Migration1. (overview)

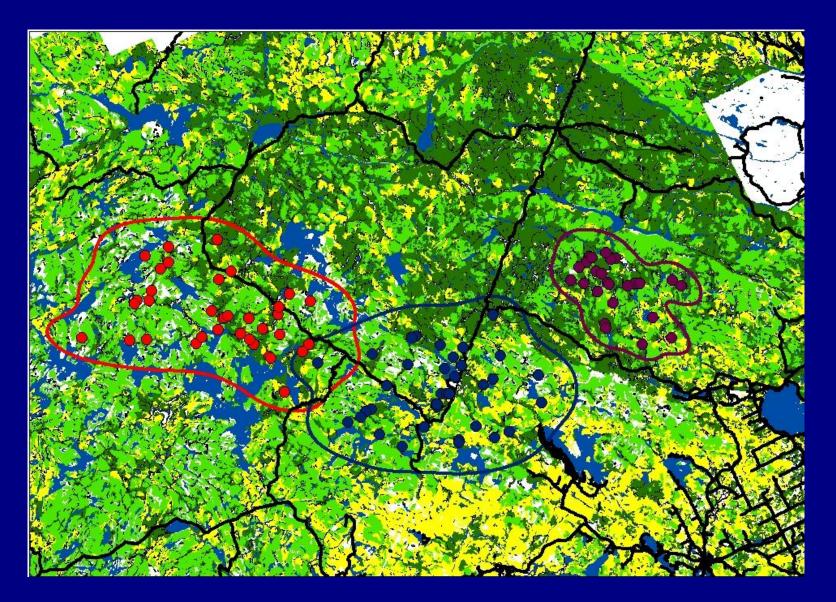
- a. Migration = movements from one location to another usually on a seasonal basis
- b. Usually round-trip but not always
- c. Evolved to avoid unfavorable or exploit favorable conditions
 - 1) Food availability
 - 2) Weather
 - 3) Predation risk
 - 4) Mating opportunities
- d. Environmental cues
 - a. Photoperiod
 - b. Water (equatorial regions)

2. Benefits of Migration

- 1. Increased resources (food, water, cover)
- 2. Avoidance of extreme climatic conditions
- 3. Better conditions for parturition
- 4. Increased mating opportunities

3. Migratory Mammals

- 1. Bats
- 2. Cetaceans & pinnipeds
- 3. Ungulates


Johnson 1980 Ecology 61:65-71

- Read abstract
- Read part of discussion P. 69 ONLY
- Don't have to read the rest

IV. Habitat Selection

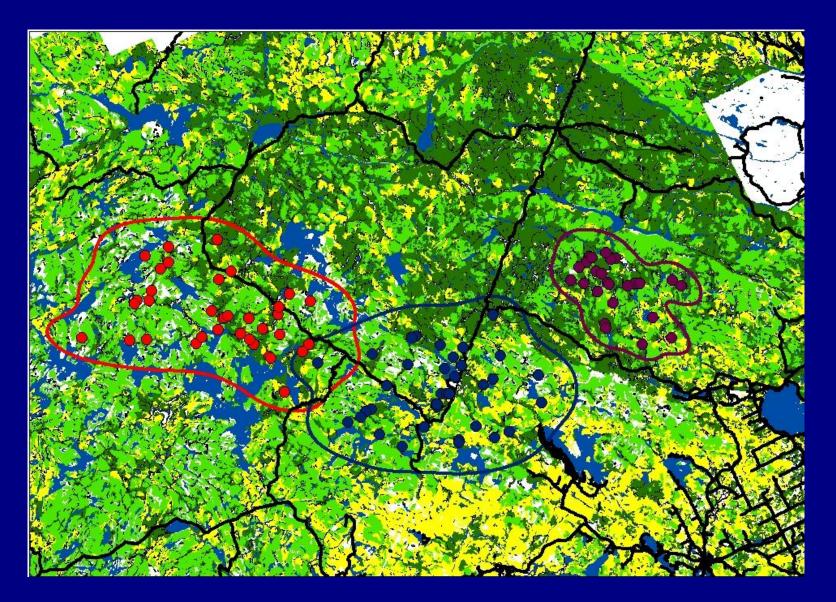
- What is habitat selection?
- What is habitat use?
- Selection = use relative to availability
- Defining use & availability requires consideration of scale (more later...)
- Use tells us little about 'decisions' made by animals or what they seek out
- Selection provides inference on these decisions

Use vs. Availability

Wildlife Habitat Relationships

- Fundamental pursuit in ecology & Con Bio
- Selection of habitat & resources should reflect strategies to maximize fitness
 – Rarely tested explicitly
- Can be used to detect trade-offs
- Selection of habitat may indicate quality

 Density/social pressure can be confounding
- Many ways to evaluate habitat selection
- Selection = used > available


A. Habitat Selection Theory

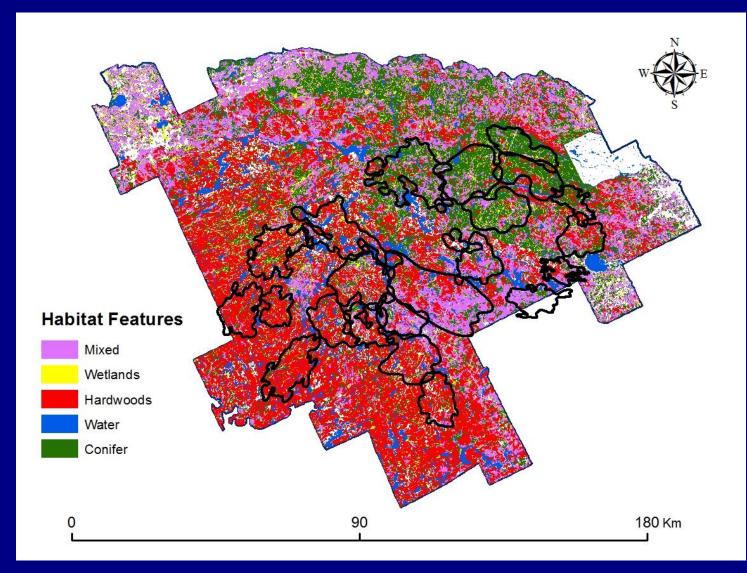
- 1. Hierarchical habitat selection
- 2. Ideal free and other distributions

1. Hierarchical Habitat Selection

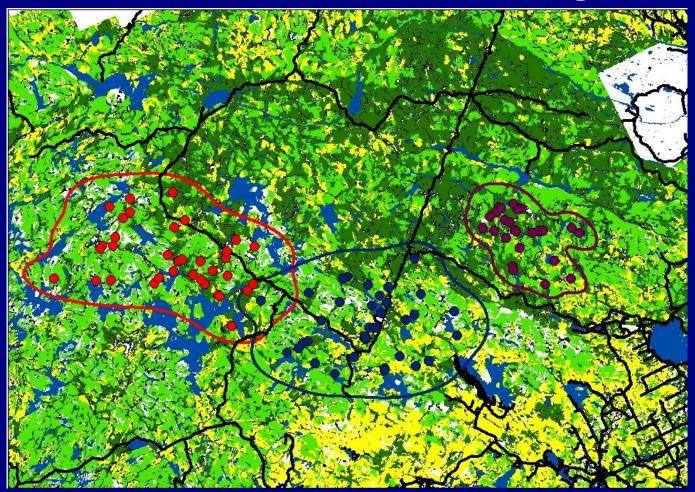
Johnson (1980) "order of selection"

Use vs. Availability

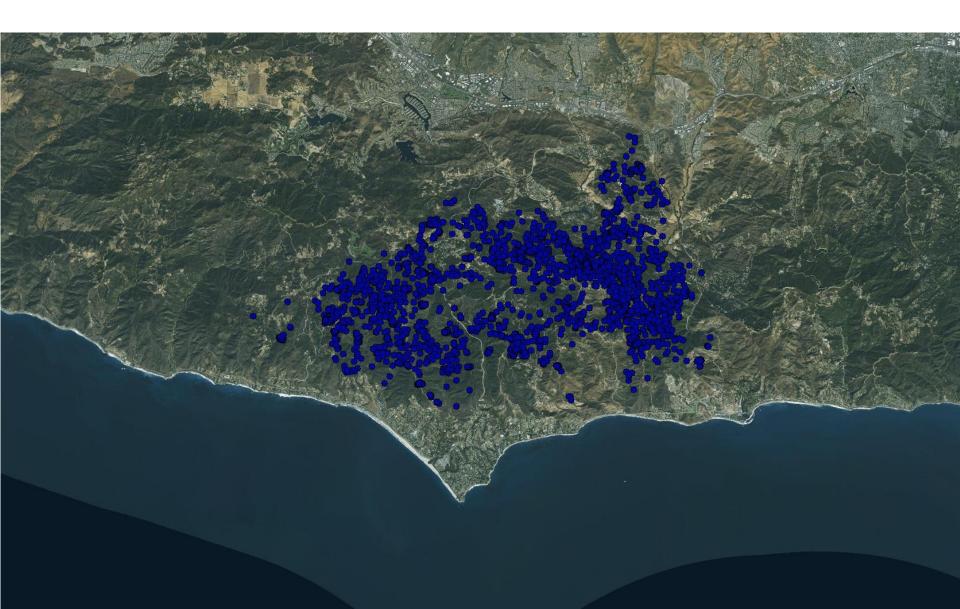
Habitat Selection is Hierarchical Johnson 1980 (cited by >3400)

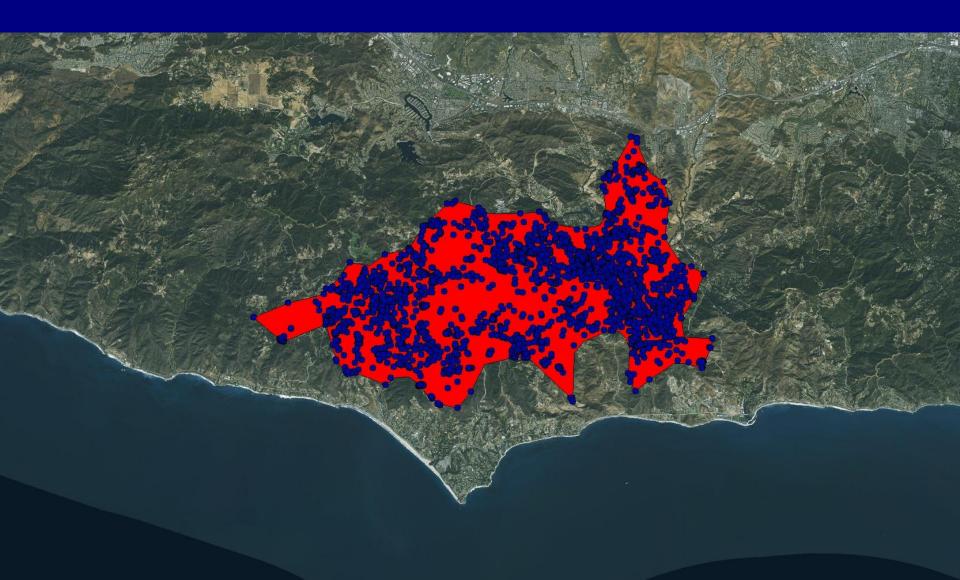

- 1st order: geographical range of species
 - Geographical range (use), entire earth (available)
 - Species distribution modeling
- 2nd order: landscape level
 - home range (use), larger landscape (available)
 - Defining landscape problematic & arbitrary
- 3rd order: within home range
 - animal locations (use), home range (available)
 - Popular and effective
- 4th order: procurement of resources at a site - Food items (use), feeding site (available)
 - -4th order a little open-ended

Habitat Selection is Hierarchical Johnson 1980 (cited by >3794)


- 1st order: geographical range of species
 - Geographical range (use), entire earth (available)
 - Species distribution modeling
- 2nd order: landscape level
 - home range (use), larger landscape (available)
 - Defining landscape problematic & arbitrary
- 3rd order: within home range

 animal locations (use), home range (available) Popular and effective
- 4th order: procurement of resources at a site – Food items (use), feeding site (available) –4th order a little open-ended


2nd Order Selection Use: Home Range Available: Landscape (study area)


3rd Order Selection Use: Animal Locations Available: Across home range

Use: Telemetry Data

Estimate Home Range

Estimate Availability (3rd Order)

Readings

- Crooks & Soule. 1999. Nature 400: 563-566.
- Gehrt & Clark. 2003. Wildlife Society Bulletin 31: 836-842.

Resource Selection Functions

- Broad class of models and analyses
- Most commonly refers to logistic regression based RSF models
- See also: resource utilization functions

 e.g, Marzluff et al. 2004; Millspaugh et al. 2006
- Logistic regression-based RSFs currently the most popular habitat selection analysis

RSF Basics

 Response variable: used and available locations (OR used and unused locations)

0 = available, 1 = used

- Predictor variables are
 - Most common are habitat/landscape features
 - Measures of food resources
 - Probability of encountering prey/predator/etc.
 - Intrinsic characteristics of animals (e.g., sex, age, ancestry), temporal metrics (e.g., night vs. day) can be fit as interactions
- $w(x) = \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ..., \beta_n X_n)$

Advantages of RSFs

- Truly multivariate: response variable = locations on landscape (pixels)
- Handles continuous & discrete independent variables (resources/habitats)
- Interactions can be incorporated
- Can examine marginal (population-level) and conditional (individual or group level) habitat selection
- RSFs allow us to ask questions beyond what habitats are selected and avoided!

Basic RSF Model

y = resource1 + resource 2... + resource k

y = r1 + r2 + r3 + random intercept (animal)

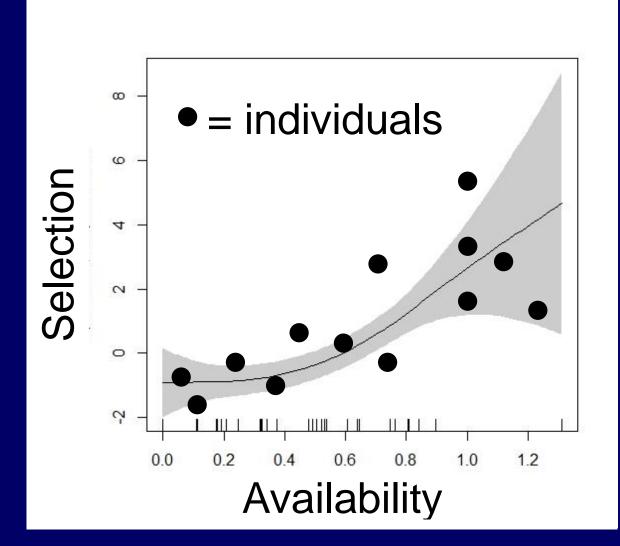
y: 0 = available to animal, 1 = used by animal

Let's Do It

- Field study, GIS work, data organization
- What are questions?
- What are predictor variables?
- Y = slope + elevation + roads (dist) + conifer (dist)
 + hardwood (dist) + water (dist)
- Random intercept of individual (1|animalID)
- Logistic model with binary response variable

Compare Use - Availability

AnimalID	Use	Sex	Age	chap	CSS	pm	rw	up	roads	trails	elev	urban	LMTDate	Latitude Longitude
P01	1	М	А	0	150.0	0.0	90.0	300.0	276.6	241.9	212.2	1714.2	7/19/2002	34.08946 -118.913
P01	1	М	А	0	150.0	0.0	90.0	330.0	276.6	241.9	222.4	1714.2	7/19/2002	34.08952 -118.913
P01	1	М	А	0	150.0	0.0	90.0	330.0	276.6	241.9	229.2	1714.2	7/19/2002	34.0896 -118.913
P01	1	М	А	0	189.7	30.0	90.0	335.4	342.1	276.6	262.5	1747.5	7/19/2002	34.08995 -118.913
P01	1	М	А	0	123.7	94.9	30.0	421.1	390.0	360.0	427.8	1710.3	7/20/2002	34.09059 -118.912
P01	0	М	А	0	123.7	94.9	30.0	421.1	390.0	360.0	176.3	1710.3	7/20/2002	34.09059 -118.912
P01	0	М	А	0	123.7	123.7	30.0	451.0	390.0	360.0	176.6	1710.3	7/20/2002	34.09066 -118.912
P01	0	Μ	А	0	30.0	108.2	0.0	408.0	365.0	313.2	242.9	1644.5	7/20/2002	34.09024 -118.911
P01	0	М	А	0	30.0	108.2	0.0	408.0	365.0	313.2	128.8	1644.5	7/20/2002	34.09024 -118.911
P01	0	М	А	0	134.2	0.0	90.0	330.0	276.6	247.4	132.0	1714.2	7/20/2002	34.0896 -118.913
P02	1	F	А	0	153.0	30.0	60.0	360.0	331.4	270.0	88.0	1722.9	7/20/2002	34.08995 -118.913
P02	1	F	А	0	153.0	30.0	60.0	360.0	331.4	270.0	96.2	1722.9	7/20/2002	34.08995 -118.913
P02	1	F	А	0	182.5	30.0	60.0	360.0	331.4	271.7	108.1	1722.9	7/20/2002	34.08995 -118.913
P02	1	F	А	0	182.5	591.7	30.0	920.3	660.7	787.5	126.0	1824.1	7/21/2002	34.09443 -118.909
P02	1	F	А	0	0.0	247.4	450.0	494.8	960.0	30.0	106.9	1055.1	7/22/2002	34.14556 -118.947
P02	0	F	А	0	0.0	276.6	212.1	381.8	1290.0	318.9	126.5	1320.3	7/23/2002	34.14471 -118.98
P02	0	F	Α	182.483	94.9	0.0	722.5	212.1	1474.9	603.0	112.3	2346.9	7/23/2002	34.14479 -119.005
P02	0	F	Α	90	42.4	30.0	660.0	30.0	2882.5	0.0	131.5	3649.7	7/23/2002	34.13084 -119.014
P02	0	F	А	30	30.0	436.8	456.9	0.0	4052.8	67.1	105.3	2571.1	7/23/2002	34.12025 -119.022
P02	0	F	А	0	42.4	558.0	256.3	0.0	4139.8	30.0	72.8	2634.7	7/23/2002	34.11875 -119.021
P03	1	М	SA	84.8528	0.0	543.3	134.2	150.0	3622.4	189.7	37.0	2800.3	7/24/2002	34.11314 -119.019
P03	1	М	SA	30	30.0	531.6	150.0	120.0	3568.9	150.0	23.9	2839.2	7/24/2002	34.11236 -119.018
P03	1	М	SA	212.132	30.0	362.5	67.1	0.0	3552.9	30.0	90.3	3394.8		34.10944 -119.013
P03	1	Μ	SA	90	42.4	768.4	0.0	123.7	2038.7	30.0	172.4	3558.0	7/24/2002	34.09622 -119.018
P03	1	Μ	SA	228.473	30.0	510.9	0.0	420.0	1612.2	30.0	152.8	4607.2	7/24/2002	34.08733 -119.012
P03	1	Μ	SA	0	0.0	256.3	201.2	807.8	1622.5	436.8	137.8	4502.5	7/25/2002	34.08476 -119.007
P03	0	М	SA	134.164	0.0	84.9	300.0	330.0	268.3	134.2	195.4	335.4	7/26/2002	34.05917 -118.969
P03	0	М	SA	30	94.9	630.7	295.5	67.1	918.3	0.0	312.1	331.4	7/26/2002	34.06258 -118.961
P03	0	М	SA	0	94.9	607.5	742.8	597.7	1110.0	216.3	260.7	840.5	7/26/2002	34.06144 -118.956
P03	0	М	SA	0	108.2	268.3	646.2	67.1	1464.8	212.1	324.3	1288.6	7/26/2002	34.064 -118.95
P03	0	Μ	SA	0	67.1	108.2	1008.0	488.4	1008.0	180.0	318.2	2351.7	7/27/2002	34.07104 -118.942


Compare Use - Availability

AnimalID	Use	Sex	Age	chap	CSS	pm	rw	up	roads	trails	elev	urban	LMTDate	Latitude Longitude
P01	1	М	А	0	150.0	0.0	90.0	300.0	276.6	241.9	212.2	1714.2	7/19/2002	34.08946 -118.913
P01	1	М	А	0	150.0	0.0	90.0	330.0	276.6	241.9	222.4	1714.2	7/19/2002	34.08952 -118.913
P01	1	М	А	0	150.0	0.0	90.0	330.0	276.6	241.9	229.2	1714.2	7/19/2002	34.0896 -118.913
P01	1	М	А	0	189.7	30.0	90.0	335.4	342.1	276.6	262.5	1747.5	7/19/2002	34.08995 -118.913
P01	1	М	А	0	123.7	94.9	30.0	421.1	390.0	360.0	427.8	1710.3	7/20/2002	34.09059 -118.912
P01	0	М	А	0	123.7	94.9	30.0	421.1	390.0	360.0	176.3	1710.3	7/20/2002	34.09059 -118.912
P01	0	М	А	0	123.7	123.7	30.0	451.0	390.0	360.0	176.6	1710.3	7/20/2002	34.09066 -118.912
P01	0	М	А	0	30.0	108.2	0.0	408.0	365.0	313.2	242.9	1644.5	7/20/2002	34.09024 -118.911
P01	0	Μ	А	0	30.0	108.2	0.0	408.0	365.0	313.2	128.8	1644.5	7/20/2002	34.09024 -118.911
P01	0	М	А	0	134.2	0.0	90.0	330.0	276.6	247.4	132.0	1714.2	7/20/2002	34.0896 -118.913
P02	1	F	А	0	153.0	30.0	60.0	360.0	331.4	270.0	88.0	1722.9	7/20/2002	34.08995 -118.913
P02	1	F	А	0	153.0	30.0	60.0	360.0	331.4	270.0	96.2	1722.9	7/20/2002	34.08995 -118.913
P02	1	F	А	0	182.5	30.0	60.0	360.0	331.4	271.7	108.1	1722.9	7/20/2002	34.08995 -118.913
P02	1	F	А	0	182.5	591.7	30.0	920.3	660.7	787.5	126.0	1824.1	7/21/2002	34.09443 -118.909
P02	1	F	А	0	0.0	247.4	450.0	494.8	960.0	30.0	106.9	1055.1	7/22/2002	34.14556 -118.947
P02	0	F	А	0	0.0	276.6	212.1	381.8	1290.0	318.9	126.5	1320.3	7/23/2002	34.14471 -118.98
P02	0	F	А	182.483	94.9	0.0	722.5	212.1	1474.9	603.0	112.3	2346.9	7/23/2002	34.14479 -119.005
P02	0	F	А	90	42.4	30.0	660.0	30.0	2882.5	0.0	131.5	3649.7	7/23/2002	34.13084 -119.014
P02	0	F	А	30	30.0	436.8	456.9	0.0	4052.8	67.1	105.3	2571.1	7/23/2002	34.12025 -119.022
P02	0	F	А	0	42.4	558.0	256.3	0.0	4139.8	30.0	72.8	2634.7	7/23/2002	34.11875 -119.021
P03	1	Μ	SA	84.8528	0.0	543.3	134.2	150.0	3622.4	189.7	37.0	2800.3	7/24/2002	34.11314 -119.019
P03	1	Μ	SA	30	30.0	531.6	150.0	120.0	3568.9	150.0	23.9	2839.2	7/24/2002	34.11236 -119.018
P03	1	М	SA	212.132	30.0	362.5	67.1	0.0	3552.9	30.0	90.3	3394.8	7/24/2002	34.10944 -119.013
P03	1	М	SA	90	42.4	768.4	0.0	123.7	2038.7	30.0	172.4	3558.0	7/24/2002	34.09622 -119.018
P03	1	Μ	SA	228.473	30.0	510.9	0.0	420.0	1612.2	30.0	152.8	4607.2	7/24/2002	34.08733 -119.012
P03	1	Μ	SA	0	0.0	256.3	201.2	807.8	1622.5	436.8	137.8	4502.5	7/25/2002	34.08476 -119.007
P03	0	Μ	SA	134.164	0.0	84.9	300.0	330.0	268.3	134.2	195.4	335.4	7/26/2002	34.05917 -118.969
P03	0	Μ	SA	30	94.9	630.7	295.5	67.1	918.3	0.0	312.1	331.4	7/26/2002	34.06258 -118.961
P03	0	М	SA	0	94.9	607.5	742.8	597.7	1110.0	216.3	260.7	840.5	7/26/2002	34.06144 -118.956
P03	0	М	SA	0	108.2	268.3	646.2	67.1	1464.8	212.1	324.3	1288.6	7/26/2002	34.064 -118.95
P03	0	М	SA	0	67.1	108.2	1008.0	488.4	1008.0	180.0	318.2	2351.7	7/27/2002	34.07104 -118.942

Ecological Dynamics

- Functional responses in resource selection
 - Selection of a given resource varies as a function of resource availability
 - Mysterud & Ims 1998, Ecology
 - Hebblewhite & Merrill 2008, J. Applied Ecol.
- Examining fitness-resource selection link
 - Does behavior influence survival, reproduction, lifetime reproductive success?
 - McLoughlin et al. 2005, 2006; Dussault et al. 2012

Functional Response

Mixed Effects RSFs in Action ex. Benson et al. 2015, Oikos 124:1664-173

- Roads negatively influenced canid survival – Shown previously
- Wolves, coyotes, hybrids in same study area
- Questions:
- 1. Do canids avoid roads more during day?
- 2. Do these *differences* b/t night & day vary as a function of road availability/density
- 3. Do these individual level responses influence survival?
- Linking resource selection to fitness and demography is important for evolutionary and practical questions!!

Overall Approach

- 3rd order selection (within home range)
- Assessed population-level and individual level response to 2 roads
- Population level: secondary roads avoided more during day than at night
- Individual level: derived coefficients for each canid with random slope model
- Regressed coefficients against ancestry (% coyote) and availability (dist. to roads)

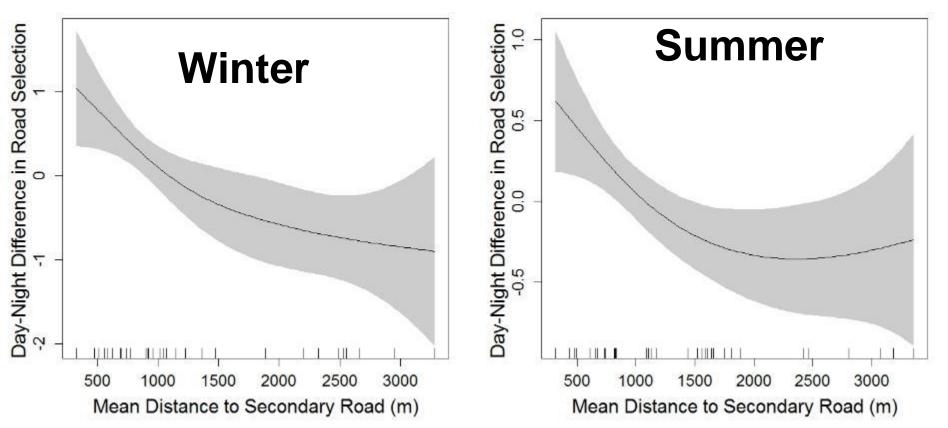
2 Step Approach to Functional Responses

- 3rd order RSF for night & day
- Q1: Do canids avoid roads more at day?
 - Population level response
 - Avoiding roads during day when encounters with humans likely
 - Selecting/avoiding less at night to exploit benefits of roads – ease of travel, human food

Do canids avoid roads more during day? Population-Level Response

	V	linter	Summer				
Resource	β _{Day}	β _{Night}	β _{Day}	β _{Night}			
	(95% CI)	(95% CI)	(95% CI)	(95% CI)			
2° Roads	0.30	-0.04	0.52	0.21			
	(0.24 <i>,</i> 0.37)	(-0.11, 0.02)	(0.46 <i>,</i> 0.58)	(0.15 <i>,</i> 0.28)			
Conclusion	Avoid	No Avoid/Select	Avoid	Avoid			

From Benson et al. (2015) Oikos 124:1164-1173.

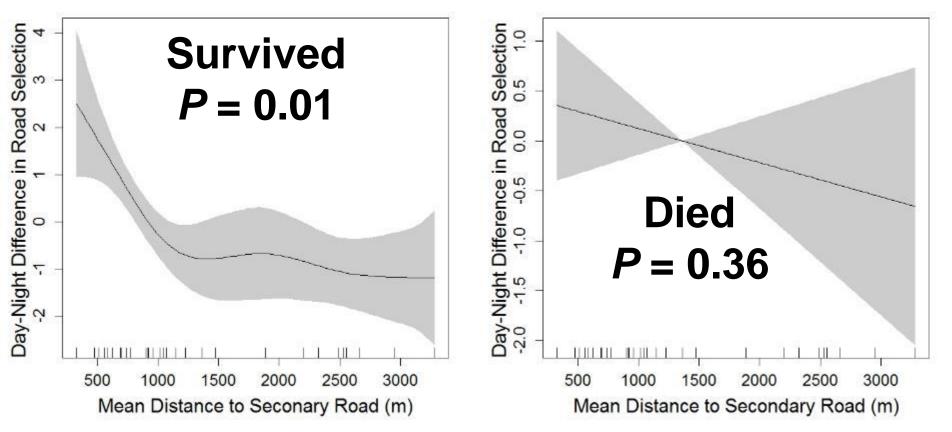


Q2: Do individuals change day-night behavior more at higher rd density?

- Derive *individual-level* coefficients from random slope models for day and night
- $\beta_{day} \beta_{night} = diff.$ in selection b/t day & night

Individual Selection Day - Night

From Benson et al. (2015) Oikos 124:1164-1173.


Diff. in day – night selection stronger at higher road density

Q3: Do these patterns influence component of fitness (survival)

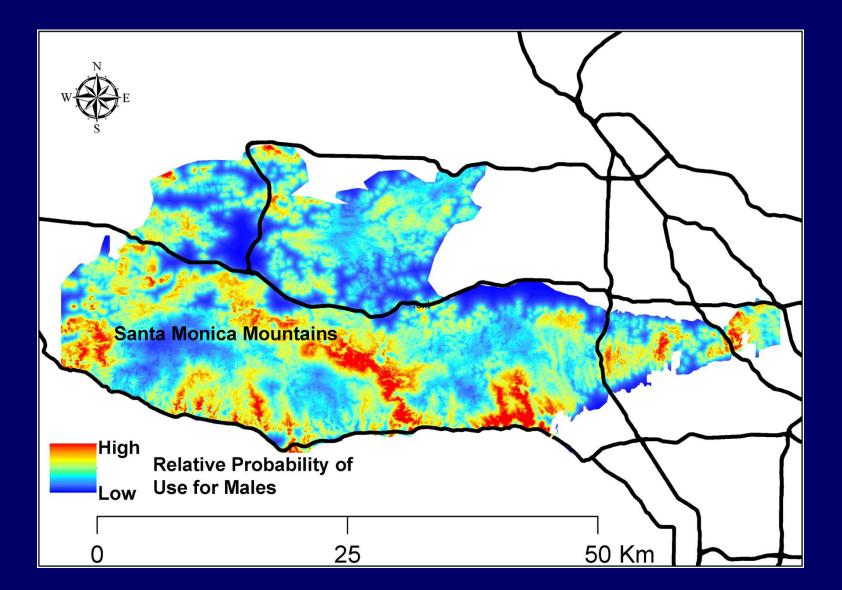
- Did animals that lived behave differently than animals that died?
- Specifically, did surviving animals change their behavior from day to night more strongly as a function of road availability than those that died?

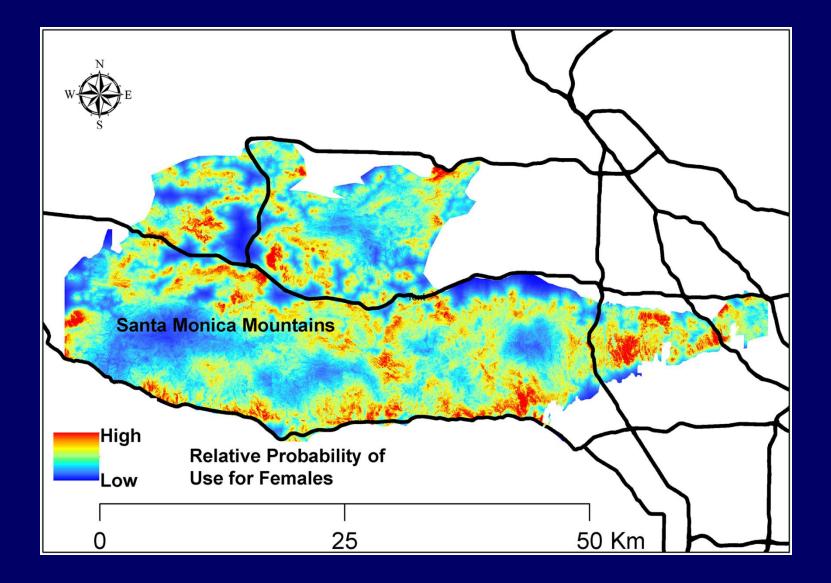
Adaptive Behavioral Response

From Benson et al. (2015) Oikos 124:1164-1173.

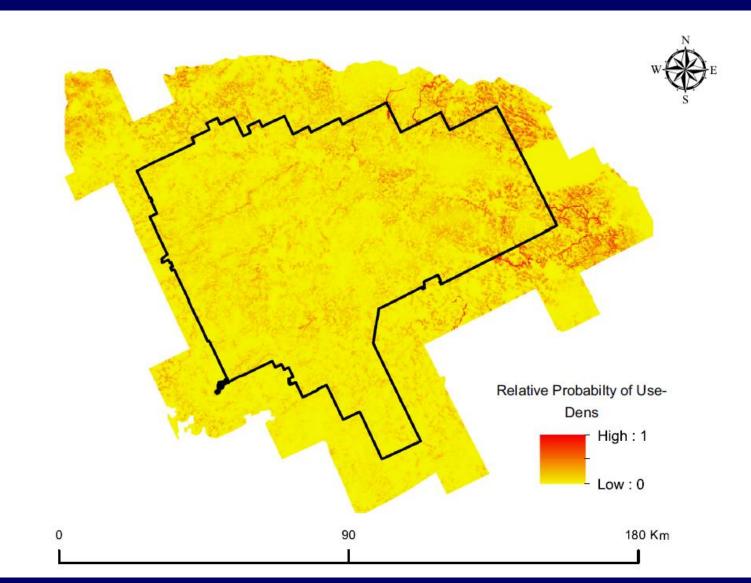
Behavioral Response Linked to Component of Fitness

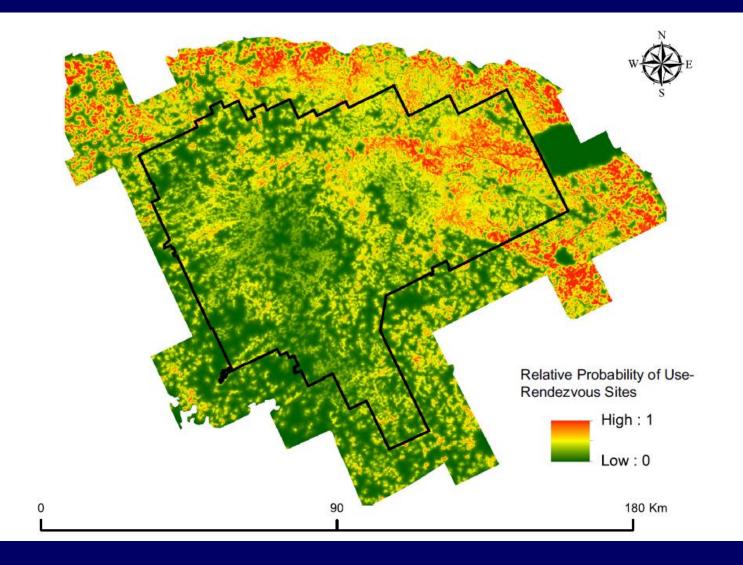
Implications

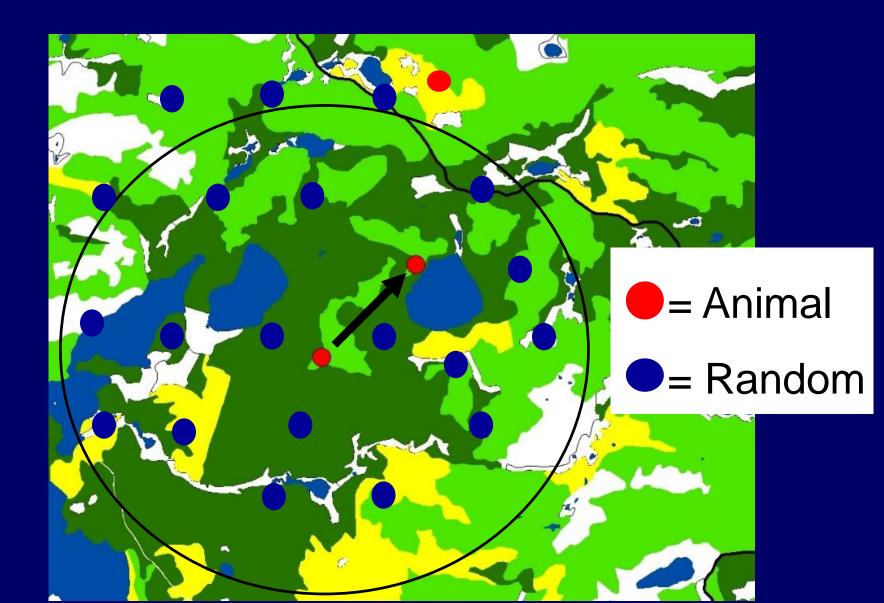

- Individuals respond to roads differently
- Different behavior had different fitness costs
- Canids can exploit roads while mitigating mortality risk = tradeoff


Relative Probability of Use

- Generate "heat" maps to predict areas that animals are likely to use
- These maps can then be used as layers for future models
- These can be done in ArcGIS or in R


Deer Kill Sites of Mountain Lions


Deer Kill Sites of Mountain Lions

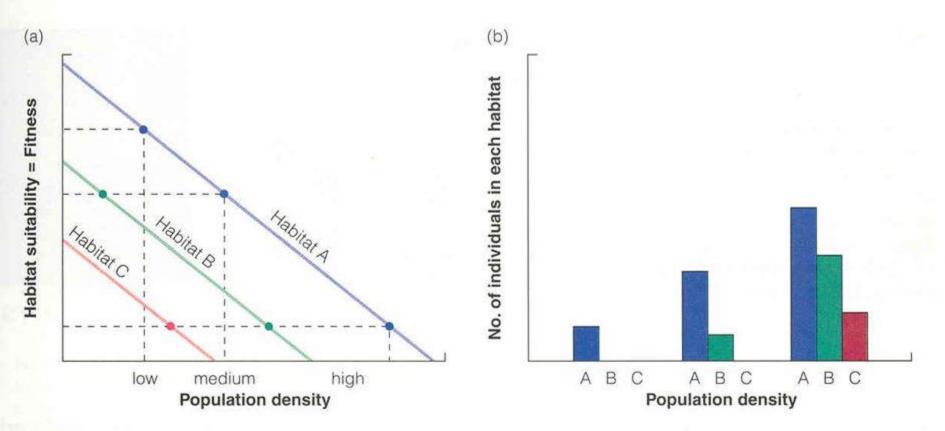

Den Sites of Wolves

Rendezvous Sites of Wolves

Step Selection RSF

Simple, but Quirky Models

- RSFs are being published at a crazy rate
- Lots of mistakes being made
- Lack of basic understanding of regression – e.g., reference categories
- Failure to properly apply hierarchical habitat selection
- Failure to appreciate importance of availability


2. Theoretical Distributions

a. Ideal freeb. Ideal despotic– Ideal pre-emptive

Ideal Free Distribution Fretwell & Lucas 1970

- Predicts how animals distribute themselves to achieve the greatest fitness
- Number of individuals in each patch is proportional to amount of resources in each
- Thus, if 2x as many resources in patch A as patch B there will be 2x number of individuals
- Individuals select habitat by balancing quality-density to maximize fitness

Ideal Free Distribution Model Of Habitat Selection

At very high densities, all habitats have equal suitability.

Assumptions

- 1. Animals have complete & accurate knowledge of distribution of resources (ideal)
- 2. Free to move to the highest quality site (free)
- 3. All individuals are competitively equal
- 4. Best sites are occupied first
- As best sites fill up, animals begin to select sites with *fewer resources but less competition*
- Best sites support most animals, but individuals achieve = fitness in different habitats

Other Distributions

- Ideal despotic distribution (IDD): best competitors monopolize best resources
 - Departure from key assumption of IDF that all competitors are equally matched
- Individuals settle in the best areas first and exclude others (e.g., via territoriality)
- Still 'ideal' as animals have complete knowledge
- But not 'free' as restrictions on best patches
- Large differences in fitness b/t haves & have nots

Empirical Support?

- Support has been found for both IFD and IDD
- Assumptions of IFD usually do not hold
- Like a lot of theories (e.g, marginal value) IFD valuable for testing predictions & learning
- What is practical implication of IFD?
- That density is a good indication of habitat quality