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Part 1: Basics
The following examples should give you a first look at what R does
and how it
works.

Introduction
R is a command-line program, which means commands are entered
line-by-line at the prompt. Being a
programming language it is very
finicky. Everything has to be entered exactly right - including
case-
sensitivity.

There are two ways of entering commands: either typing them out
carefully into the “Console Window” (the
lower-left window in Rstudio)
and hitting Enter  or writing and editing lines in the
script window (upper-left
window in Rstudio), and “passing” the code
into the console by hitting Ctrl+Enter .

In general, it is better to do all of your coding in a script window,
and then save the raw code file as a text
document, which you can
revisit and re-run at any point later.

R is a calculator
1+2

## [1] 3

3^6

Part 1: Basics



## [1] 729

sqrt((20-19)^2 + (19-19)^2 + (19-18)^2)/2

## [1] 0.7071068

12345*54312

## [1] 670481640

Assigning variable names
The assignment operator is <- . It’s supposed to look
like an arrow pointing left.

X <- 5      # sets X equal to 5

Using the assignment operator sets the value of X  but
doesn’t print any output. To see what X  is, you need
to
type:

X

## [1] 5

Note that X  now appears in the upper-right panel of
Rstudio, letting you know that there is now an object in
memory (also
called the “Environment”) called X .

Now, you can use X  as if it were a number

X*2

## [1] 10

X^X

## [1] 3125

Note that you can name a variable ANYTHING, as long as it starts with
a letter.

Fred <- 5

Nancy <- Fred*2

Fred + Nancy

## [1] 15



Vectors
Obviously, X  can be many things more than just a single
number. The most important kind of object in R is
a “vector”, which is a
series of inputs (and therefore resembles “data”).

c()  is a function - a very useful function that creates
“vectors”. In all functions, arguments are passed
within
parentheses.

We can use the c()  function as follows:

X <- c(3,4,5)   # sets X equal to the vector (3,4,5)

X

## [1] 3 4 5

Now, let’s do some arithmetic with this vector:

X + 1

## [1] 4 5 6

X*2

## [1]  6  8 10

X^2

## [1]  9 16 25

((X+X^2/2)/X)^2

## [1]  6.25  9.00 12.25

Note that in all of these cases, the arithmetic operations are
performed on a term-by-term basis.

We can very quickly look at some exponential growth (e.g. using
Washington sea otter numbers: N0 = 60,
50 years gone by, and an annual
growth rate of 7%:

years <- 0:60

lambda <- 1.07

N0 <- 50

N0*lambda^years



##  [1]   50.00000   53.50000   57.24500   61.25215   65.53980   70.12759

##  [7]   75.03652   80.28907   85.90931   91.92296   98.35757  105.24260

## [13]  112.60958  120.49225  128.92671  137.95158  147.60819  157.94076

## [19]  168.99661  180.82638  193.48422  207.02812  221.52009  237.02649

## [25]  253.61835  271.37163  290.36765  310.69338  332.44192  355.71285

## [31]  380.61275  407.25564  435.76354  466.26699  498.90568  533.82907

## [37]  571.19711  611.18091  653.96357  699.74102  748.72289  801.13349

## [43]  857.21284  917.21774  981.42298 1050.12259 1123.63117 1202.28535

## [49] 1286.44533 1376.49650 1472.85125 1575.95084 1686.26740 1804.30612

## [55] 1930.60755 2065.75007 2210.35258 2365.07726 2530.63267 2707.77695

## [61] 2897.32134

Exercise 1: Calculate population growth
You can get some really quick population growth answers this way.
Compute
how many sea otters there will be by 2050 and 2100 (80 and 130
years after
release). HINT: you can just replace the vector with a
single number.

Multiple Vectors and Data Frames
Data is most often multiple vectors of the same length. If we create
a second vector Y  we can use it
alongside our first vector
 X  using the data.frame()  command:

Y <- c(1,2,3)

data.frame(X,Y)

##   X Y

## 1 3 1

## 2 4 2

## 3 5 3

That just outputs the data, but you should save it another
object:

mydata <- data.frame(X,Y)

A data frame has columns with names:

ncol(mydata)

## [1] 2

names(mydata)

## [1] "X" "Y"



A column can be extracted from a dataframe with a $ :

mydata$X

## [1] 3 4 5

mydata$Y

## [1] 1 2 3

Exercise 2: Create a data frame
Create a data frame called myseaotters  that contains the
number of years from
0 to 130 and the predicted population, starting at
60 animals with a lambda rate
of 1.07.

Part 2: Loading and Exploring Data
The following examples should explain how to import data frames and
to work
with the data contained within them.

Loading Data
We will use Steller sea lion (Eumotopias jubatus) data as an
example. These are weights, lengths, and
girths (basically, under the
arm/flipper pits) of sea lion pups about two months after birth as part
of a tagging
mark-recapture study. These data were collected (in part by
Dr. Gurarie) on five islands in the Russian North
Pacific.

This is what sea lion pups look like:



This dataset is available on Blackboard. Once you download it, you
can use the File Explorer to determine
its location and read it into
R.

SeaLions <- read.csv("<insert the directory>/SeaLions.csv")

If you copy and paste the file directory in, you have to change the
direction of the slashes. Note that csv  is
a text
based file type (Comma Separated Values) - it just means that
commas between entries separate
columns. You can save any Excel file as
a csv  using the Save As function. CSVs are by far the the
most
common and convenient file type used for loading into R.

Alternatively, you can import datasets into R  using the
 RStudio  interface. To do this:



1. Click File
2. Hover over Import Dataset
3. Select From Text  (or if you’re doing this with a
different file type in the

future, the matching type of file)
4. Navigate to the SeaLions dataset, highlight it, and click
 open

This will automatically input the proper code into the console and
save your file to the environment. Note
that the file has the same name
rather than a name you designate for it.

Working with data frames
Look at some properties of this data file, with the following
functions:

is(SeaLions) # tells what type of files we have

## [1] "data.frame" "list"       "oldClass"   "vector"

names(SeaLions) # tells us the names of all the columns

##  [1] "Island"      "TaggingDate" "ID"          "Weight"      "Length"     

##  [6] "Girth"       "BCI"         "Sex"         "Age"         "DOB"

head(SeaLions) # shows the first several rows of the dataframe

##     Island TaggingDate     ID Weight Length Girth       BCI Sex Age  DOB

## 1 Chirpoev   7/10/2005 Br800L   15.5     93  69.0 0.7419355   M  NA <NA>

## 2 Chirpoev   7/10/2005 Br801L   29.0    106  71.0 0.6698113   F  NA <NA>

## 3 Chirpoev   7/10/2005 Br802L   35.5    112  76.0 0.6785714   M  NA <NA>

## 4 Chirpoev   7/10/2005 Br803L   32.0    107  72.0 0.6728972   M  NA <NA>

## 5 Chirpoev   7/10/2005 Br804L   32.0    105  73.5 0.7000000   M  NA <NA>

## 6 Chirpoev   7/10/2005 Br805L   33.5    111  72.0 0.6486486   M  NA <NA>

Use a $  to extract a given column:

Length <- SeaLions$Length

Weight <-SeaLions$Weight

Island <- SeaLions$Island

Sex <- SeaLions$Sex

Summary Statistics
Some basic summary statistics include:



range(Length) #range

## [1]  93 126

median(Length) #median

## [1] 110

mean(Length) #mean

## [1] 109.8434

var(Length) #variance

## [1] 34.82854

sd(Length) #standard deviation

## [1] 5.901571

Graphical Summaries
Histogram
A histogram can show us the distribution of a single continuous
variable:

hist(Length)

hist(Weight)



Boxplot
A boxplot shows us relationships between a continuous variable (like
Length/Weight/Girth) and a discrete
variable (like Island/Sex):

boxplot(Length ~ Island)

boxplot(Weight ~ Sex)



Scatterplot
A scatterplot shows us relationships between two continuous
variables:



Exercise 3: Plot the sea otter population growth
Plot the myseaotter  data frame you made in Exercise
2.

Part 3: Linear Models for Exponential
Growth

The following examples show you how to do a linear regression model
and a log
transformation model

Importing Data
The first step is to import our new dataset. This time with sea
otters.

SeaOtters <- read.csv("<insert your directory>/SeaOtters.csv")

Let’s double check that the data we imported matches our Excel
file.

head(SeaOtters)



##   year count

## 1 1970    59

## 2 1989   208

## 3 1990   212

## 4 1991   276

## 5 1992   313

## 6 1993   307

Extract variables and explore
Year <- SeaOtters$year

Count <- SeaOtters$count

It’s usually a good idea to run some summary statistics on each of
your variables. Here’s a couple examples

range(Year)

## [1] 1970 2013

quantile(Count)

##   0%  25%  50%  75% 100% 

##   59  360  551  814 1272

Always, always, always PLOT your data before modeling your data!

plot(Year, Count)



It is quite easy to make plots on a log scale, by the way, which can
be useful:

plot(Year, Count, log = "y")



Linear Model
The lm()  function produces a linear model. That means it
finds the “best” values for a model that looks
likes this:

Where  is the intercept,
  is the slope, and  is the “residual” variation,
i.e. a random variable: .

In R this model is fitted as follows:

Model1 <- lm(Count ~ Year)

Note, we take a “model fit” (which is a complicated thing) and put it
into a new object with name Model1 .

The output of Model1  is just the estimated parameters
for the intercept and the “Year effect” (i.e. slope of
the curve).

Model1

= α + β +Yi Xi ϵi

α β ϵ N (0, )σ2



## 

## Call:

## lm(formula = Count ~ Year)

## 

## Coefficients:

## (Intercept)         Year  

##   -65751.54        33.19

There is a lot more information if you ask for a summary:

summary(Model1)

## 

## Call:

## lm(formula = Count ~ Year)

## 

## Residuals:

##     Min      1Q  Median      3Q     Max 

## -152.74  -78.18  -58.79   34.71  417.48 

## 

## Coefficients:

##              Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -65751.54    6158.81  -10.68 2.19e-10 ***

## Year            33.19       3.08   10.78 1.83e-10 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 142.4 on 23 degrees of freedom

## Multiple R-squared:  0.8347, Adjusted R-squared:  0.8275 

## F-statistic: 116.1 on 1 and 23 DF,  p-value: 1.83e-10

Of importance to us is the Estimate  (same as above) and
the Std. Error  which quantifies how precise
our estimate
is. Two standard errors is (roughly) the same as a 95%
Confidence Interval. Thus, the slope
on this fit is 33.2 new
sea otters / year ± 6.18. This is definitely bigger than 0! We can also
see that because
the p-value (under column
 Pr(>|t|) ) is very very very very small.

Note, also that .
  is between 0 and 1 and measures
how tight the fit is, specifically it is the
proportion of the
variance explained by the model.

We can plot this linear model on our data:

plot(Year, Count)
abline(Model1)

= 0.835R2 R2



Note, abline  is a function that adds an intercept-slope
line to any existing plot.

There are some problems with this model. What are they?

You can see one issue if you plot the model residuals as follows:

plot(Model1,1)



Do those residuals look consistently normally distributed?

Log Transformation
We kind of knew the growth was not linear (otherwise this week’s
topic wouldn’t have been called
Exponential Growth). But how
can we use a linear model to fit an exponential growth function?

With a simple transformation!

How does this relate to an exponential growth model?

We just replaced  with
 , and  with . But  is EXACTLY the growth rate  (and ). The 
hanging on the end is a bit of
stochasticity.

Anyways, doing this with our linear modeling tools is easy. We just
wrap Count  in a log.

Model2 <- lm(log(Count) ~ Year)

summary(Model2)

log( ) = α + β +Yi Xi ϵi

=elog( )Yi eα+β +Xi ϵi

=Yt N0 eβ +Xt ϵt

eα N0 i t β r = λeβ ϵi



## 

## Call:

## lm(formula = log(Count) ~ Year)

## 

## Residuals:

##       Min        1Q    Median        3Q       Max 

## -0.191084 -0.062944 -0.005104  0.055518  0.231704 

## 

## Coefficients:

##               Estimate Std. Error t value Pr(>|t|)    

## (Intercept) -1.402e+02  4.732e+00  -29.63   <2e-16 ***

## Year         7.325e-02  2.367e-03   30.95   <2e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 0.1094 on 23 degrees of freedom

## Multiple R-squared:  0.9766, Adjusted R-squared:  0.9755 

## F-statistic: 958.1 on 1 and 23 DF,  p-value: < 2.2e-16

Note how our statistics changed. Specifically: our  estimate (which is also ) is now 0.07325, which is a
good
estimate of the intrinsic growth rate. Even better, we know have a
standard error around that estimate:
0.00237, which means our growth
rate can be written as: . We can convert that
to an annual
growth rate in R as well (do NOT worry about understanding the
following code:

r.hat <- summary(Model2)$coefficients[2,1]

r.sd <- summary(Model2)$coefficients[2,2]

exp(c(r.hat, r.hat-2*r.sd, r.hat+2*r.sd))

## [1] 1.076001 1.070920 1.081106

So our estimate of annual population growth is 7.6% (95% Confidence
Interval 7.1%-8.1%)

Note how much right the 
value is! This is (by that measure also) a much better fit.

Let’s visualize the fit:

plot(Year, log(Count))

abline(Model2)

β r

= (7.32 ± 0.47) ×r̂ 10−2

R2



Much better!

Let’s make our final graph a little nicer

plot(Year, log(Count), main = 'Sea Otter Population', col = 'brown', pch = 4)

abline(Model2, col = "blue")



The commands we’re using within the plot  function
include setting the title of the graph ( main = ),
changing
the color of the symbols and the line ( col = ), and changing
the shape of the symbols ( pch = ).
There also many more
alterations you can make to get your graph perfect - but that can be a
deep dark
R abbit hole!

Check Your New Residuals
plot(Model2, 1)



These look better! (Though it takes practice to understand good
vs. bad residuals.)

Extra packages (extra material)
It can be a bit fussy to plot the confidence interval around our
prediction. Below, we include a little snippet of
code which does just
that, but you have to install a new “library” called
 ggplot2 , which has a bunch of
fancier graphing tools.

To install a library, you use the install.packages() 
function:

install.packages("ggplot2")

You only need to install a package once on your computer. After that,
it will always be there.

Alternatively, you can use the R  interface to install
new packages. To do so:

Click the Packages  tab in the bottom right window of
 Rstudio

Click Install



Leave the defaults in place; in the blank “packages” line, type the
name of the
package you want. RStudio  should automatically
fill this in with suggestions.
Use a comma to separate the names of
multiple package if installing more than
one simultaneously.

Click Install

This will automatically put the correct code in the console for
you.

From now on, whenever you need that package loaded you use the
 library  function. You only have to do
this once each time
you open R , after that, a package stays in your library for
the rest of your session.

library(ggplot2)

If you receive prewritten code from someone and open the file in
 RStudio , the software will automatically
identify packages
called by the library  funtion. If you do not have these
packages installed, Rstudio  will
ask you if you’d like to
install them, which can save you time. However, you will still need to
run the
library  function on each package before you can use
them.

Now - finally - you have access to the funky / fancy
library of ggplotting functions. For example:

ggplot(SeaOtters, aes(Year, Count)) + geom_point() + 

    stat_smooth(method = "glm", 

                method.args = list(family = gaussian(link = "log")))

## `geom_smooth()` using formula 'y ~ x'



This really looks like a nice fit!


