# Introduction 

## MAMMALOGY 2019

## Expectations for Today

- You will be expected to be able to:
- Read and write scientific names
- Draw cladograms
- Identify the bones of the skull
- Identify the bones of the body
- Calculate the formulae for teeth patterns
- Identify occlusal patterns


## Phylogenetics

Phylogenetics - the study of evolutionary relationships among taxa

Taxa - the individual groups of species (order, family, genus are all taxa)

Cladogram - a branching diagram showing the relationships between taxa


Taxonomic Rankings


## Taxonomic Rankings

## Scientific Nomenclature

- Orders and Families: first letter capitalized
- In Class Mammalia, most Orders end in "a"
- Most Families end in "idae"
- Genus and Species
- Genus is capitalized
- species is not capitalized
- Genus and species need to be written in italics or underlined
- When only keyed to genus, followed by "spp."


## Scientific Nomenclature

- A. Homo sapiens
- B. Homo sapiens
- C. Homo Sapiens
- D. homo sapiens
- E. homo sapiens
- K. Homo Sapiens
- F. Homo Sapiens
- G. Homo sapiens
- H. Homo sapiens
- I. homo sapiens
J. Homo sapiens
- L. Homo spp.


## Cladograms



## Cladograms



## Behavioral Key Terms

- Nocturnal - when an animal is active at night
- Diurnal - when an animal is active during the day
- Crepuscular - when an animal is active during twilight
- Migratory - an animal that moves from one region to another when seasons change
- Monogamous - both the male and female have only one mate
- Polygamous - both the male and female have multiple mates
- Polygynous - only the male has multiple mates
- Polyandrous - only the female has multiple mates


## Anatomical Directions

- Dorsal - top of animal
- Ventral - underside of animal
- Anterior - towards the head or snout
- Posterior - towards the rear
- Lateral - left or right side of animal
- Proximal - point at which appendage joins the body
- Distal - extremity of appendage


## Dorsal View



Ventral View


## Lateral View



## Skeletons

## MAMMALOGY 2019

## The Skeleton



Figure 6.1.
A cat skeleton.

## The Skeleton



Figure 6.1.
A cat skeleton.

## The Skeleton



Figure 6.1.
A cat skeleton.



Figure 5.10 Pectoral and pelvic girdles. The bone patterns of $(A)$ the pectoral and (B) pelvic girdles and the forelimbs and hind limbs for the Norway rat (Rattus norveaicus). Each in-

## Modified Limbs



## Position of Feet



## Skull Basics




Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



# external auditory meatus 

Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. Sce page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull


jugal

Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. Sce page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).


Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



## nasal bone

Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



# occipital bone 

Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



# occipital condyle 

Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull


parietal

Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



# sagittal crest 

Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



Fig. 1. Cranium and left mandible of Canis A, dorsal view; B, ventral view; C, left lateral view. See page 7 for key to features (modified after DeBlase and Martin, 1981).

## Parts of the Skull



- Pedicle - a protuberance of the frontal bone of the skull found among many ungulates that supports horn or antler growth


## Parts of the Skull:

Diastema
$\leftarrow^{2 \mathrm{~cm}}$ -


Artiodactyla, Perissodactyla, Lagomorpha, Rodentia

No diastema
$\longmapsto 5 \mathrm{~cm} \longrightarrow$


Soricomorpha, Didelphimorhpia, Carnivora, Chiroptera

## Marsh Rabbit and Coyote

## Teeth Patterns



- Homodont
- All teeth are the same
- Armadillo (main one in this lab)
- Heterodont
- All teeth are different
- Incisors, Canines, Premolars, Molars
- All other species (most terrestrial mammals)


## Heterodont



## Incisors

- Usually unicuspid
- Used for grasping or cutting
- Restricted to premaxilla


Heterodonts

## Canines

- Unicuspid and single-rooted
- Used for stabbing or holding

- Never more than 4 total canines, two on each side, one on top, and one on bottom
- First tooth located in the maxilla



## Premolars

- Can be unicuspid, bicuspid, tricuspid, multicuspid
- They vary in function and size
- Usually two roots


## Molars

- Bicuspid, tricuspid, or multicuspid,
- Vary in function and size
- Fully erupted in adults only
- Usually 3 roots


## Carnassials

- Commonly called the carnassial pair
- Self-sharpening combination of a premolar and molar tooth typically found only in the order Carnivora
- Important for slicing and cutting




## What about elephant tusks?

## Heterodonts



Incisors!

## Heterodonts

## Occlusal Patterns

- Occlusal Patterns - the forms of the outside of the teeth
- In particular, these occlusal patterns or forms describe the shape of the cuspids on the premolars and molars
- These shapes determine how food is masticated


## Occlusal Patterns

- Bunodont
- Cusps of teeth with rounded or low conical shapes
- Omnivores (e.g. Humans, Suidae)
- Selenodont
- Cusps of teeth with cresents in griding surface (i.e., "moon tooth")
- Ruminants (e.g. Cervidae, Bovidae)
- Lophodont
- Cusps of teeth formed in transverse or longitudinal crests or ridges
- Hind gut fermenters (e.g. Rodentia, Lagpmorpha, Equidae)
- Dilambdodont
- Pre-molars/molars have cutting edges in shape of "W"
- Insectivores (e.g. Soricomorpha)
- Tribosphenic
- Premolars/molars have 3 cusps
- (e.g. Opossums)
- Secodont
- Pre-molars/molars have cutting edges on cusps (i.e., carnassial shears)
- Carnivores (e.g. Carnivora)

Bunodont - Black bear


Selenodont - White-tailed Deer


Lophodont - Eastern Cottontail


Dilambdodont - Smoky Shrew


Tribosphenic - Virginia Opossum

Secodont - Red Wolf



Top picture = Left dorsal view of cranium; Bottom picture = Lateral view of left mandible Images from species accounts in Trani et al. 2007. Land Manager's Guide to Mammals of the South

## Dental Formulae

- Way of designating the number and arrangement of teeth
$\longmapsto 5 \mathrm{~mm}$ —
- | = Incisors
- C = Canines
- $\mathrm{P}=$ Premolars
- M = Molars

- Upper mandible/lower mandible
- Dental Formula :


I 1/2, C 1/1, P 1/2, M 3/3 = $14 \times 2=28$

## Dental Formulae

- Way of designating the number and arrangement of teeth
- | = Incisors
- C = Canines
- $\mathrm{P}=$ Premolars
- M = Molars
- Upper mandible/lower mandible
- Dental Formula :


I $1 / 1$, C 0/0, P 0/0, M 3/3 = $8 \times 2=16$

## Dental Formulae

- On bottom:
- Incisors = 3
- Canines = 1
- Premolars = 4
- Molars = 3



## Dental Formulae

- On top:
- Incisors = ?
- Canines = ?
- Premolars = ?
- Molars = ?



## Dental Formulae

- On top:
- Incisors = 3
- Canines = 1
- Premolars = 4
- Molars = 2


Canis lupus (gray wolf) skull

## Dental Formulae

- On top:
- Incisors = 3
- Canines = 1
- Premolars = 4
- Molars = 2
- I3 C1 P4 M2
- On bottom:
- Incisors = 3
- Canines = 1
- Premolars = 4
- Molars = 3
- I3 C1 P4 M3

$$
(3 / 3+1 / 1+4 / 4+2 / 3) \times 2=42
$$

## Today's Lab

- Full Cat Skeletons
- Full Bat Skeleton
- Full Primate Skeleton
- Ungulate, Carnivore, and Rodent Skulls
- Ungulate Legs


## Bones to Know:

| Carpals | Ribs | Auditory bulla | Occipital Bone |
| :--- | :--- | :--- | :--- |
| Clavicle | Sacrum | Basioccipital | Occipital condyle |
| Femur | Scapula | External auditory meatus | Palatine |
| Fibula | Sternum | Foramen magnum | Parietal |
| Humerus | Tarsals | Frontal | Postorbital process |
| Ilium | Ulibia | Infraorbital foramen | Premaxilla |
| Ischium | Cervical vertebrae | Interparietal | Sagittal crest |
| Metacarpals | Thoracic vertebrae | Sacrimal |  |
| Metatarsals | Lumbar vertebrae | Mandible |  |
| Patella | Caudal vertebrae | Mandibular fossa |  |
| Phalanges |  | Maxilla |  |
| Pubis |  | Nasal bone |  |
| Radius |  |  |  |

## Phalange Formulae

- Start with first digit on the side of the radius for forelimbs and the side with the tibia for hindlimbs
- Count the number of phalanges associated with each digit and place a dash between each one
- This can be useful in delinieating between species (e.g. cats are 4-4-4-3 while dogs are 4-4-4-4 )
- Whale fin = ( 1-5-5-5-3 )



## Phalange Formulae



